HSDB


Schnellnavigation

Befehlstasten/Accesskeys


Abschnittsende: zur Schnellnavigation

globaler Servicebereich

Abschnittsende: zur Schnellnavigation

Navigation

Seiteninhalt/Textbeginn

HSDB (HS00)

HSDB (Hazardous Substances Data Bank) enthält Informationen zur Toxikologie und Pharmakologie potenziell für die Umwelt gefährlicher Substanzen. Quellen sind internationale Zeitschriften, Bücher und US-Regierungsberichte. Nachgewiesen werden CAS-Nummern, Synonyme, Vorzugsbezeichnungen, Strukturinformationen, toxikologische und pharmakologische Daten, Angaben zum Umweltverhalten, Produktionsdaten (Herstellung, Verwendung, Verbrauch, US-Importe, US-Exporte) sowie gesetzliche Regelungen und Sicherheitsbestimmungen.

 

 

Datenbank-Inhalt

Sachgebiete

Toxikologie

Substanzidentifizierung, Herstellungsangaben, Verwendung, chemisch-physikalische Eigenschaften, Sicherheitsbestimmungen, Toxizität, biomedizinische Wirkung, Pharmakologie, Ökotoxikologie, gesetzliche Regelungen (hauptsächlich USA), Nachweismethoden

DatenbanktypFaktendatenbank
SpracheEnglisch
Quellen
  • Handbücher
  • Monographien
  • USA-Regierungsberichte
  • Technische Berichte
  • Zeitschriften
Datenbankgruppen

Für einige Fachgebiete gibt es vordefinierte Datenbankgruppen.

Die Datenbank HSDB ist in folgenden Datenbankgruppen enthalten:
XTOXFACT.

Datenbank-Bestand

Umfang5.575 (Stand 06/2012)
Datenbestand

Den tagesaktuellen Datenbankumfang finden Sie im Update-Status.

AktualisierungsintervallMonatlich

Recherche

Hinweise

Die Dokumentationseinheiten in HSDB sind sehr oft umfangreich, da sie bis zu 140 Datenfelder enthalten können und die meisten dieser Felder mehrfach ausgeprägt sein können (Wiederholungsfelder = Member-Felder). Die Felder sind nach fachlichen Gesichtspunkten gruppiert. Die Gruppenbezeichnungen der Felder sind in den Dokumenten durch ++ gekennzeichnet, Untergruppenbezeichnungen sind zusätzlich durch + markiert. Gruppen- und Untergruppen können selektiv im SHOW angezeigt werden und sind für die qualifizierte Suche verwendbar.

Beispiel:

F german?/MANU
S F=MANU

Wegen des häufig sehr großen Datenumfangs eines Dokuments wird im Standard-SHOW neben den Feldern der Gruppen DATAMAINTENANCE und IDENTIFICATION OF SUBSTANCE lediglich ein Überblick über alle Felder eines Dokuments (nur Feldbezeichnungen, keine Daten) gegeben, in denen Daten enthalten sind. Die gesamten Dateninhalte sind mit SHOW F= ALL bzw. je nach Copyrightbestimmung mit SHOW F=ALL;USE=DLOAD abrufbar.

Daueraufträge (SDI) sind nicht möglich, da mit jedem Update der gesamte Datenbestand neu geladen wird.

Vokabular

Chemical Names and Synonyms (NAME; SY; TE)
Sprache des Vokabulars: Englisch

CAS Numbers (CR) (Chemical Abstracts Service Registry Numbers)

Suchbare Textfelder

Folgende Dokumentabschnitte werden bei der Freitextsuche (FT) berücksichtigt:

Chemical/Physical Properties (CHEM)
Environmental Fate/Exposure Potential (ENVI)
Manufacturing and Use Information (MANU)
Monitoring Methods (MONI)
Name (NAME)
Pharmacology (PHAR)
References, Additional (REFE)
Safety and Handling (SAFE)
Standards/Regulations for Exposure (STAN)
Synonyms (SY)
Toxicology/Biomedical Effects (TOXI)

Suchsprache(n) im Basic Index:
Englisch

 

Datenfelder, alphabetisch

Erläuterungen:

D = DISPLAY F = FIND S = SHOW
1 : Front-End-Maskierung wird empfohlen
2 : Wort für Wort mit Feldbezeichnung suchbar
3 : nur selektiv suchbar
(F): Feld ist nur Freitext suchbar (siehe Basic Index)

Kommando Feldbezeichnung Beispiele Anmerkungen
(F) S ABIO Abiotic Degradation F seawater/ABIO Gr-Nr.: 7.03.02
Basic Index.
(F) S ACTN Mechanism of Action F l yase activity/ACTN Gr-Nr.: 5.12.04
Basic Index.
(F) S ADE Absorption,
Distribution and Excretion
F elimination/ADE Gr-Nr.: 5.12.01
Basic Index.
(F) S ADI Acceptable Daily Intakes F no effect level/ADI Gr-Nr.: 8.02
Basic Index.
(F) S ALAB Analytic
Laboratory Methods
F detection limits/ALAB Gr-Nr.: 9.02
Basic Index.
(F) S ANML Animal
Concentrations
F game birds/ANML Gr-Nr.: 7.05.08
Basic Index.
(F) S ANTR Antidote and Emergency
Treatment
F gastric lavage/ANTR Gr-Nr.: 5.03
Basic Index.
(F) S ARTS Artificial Sources F effluent?/ARTS Gr-Nr.: 7.02.02
Basic Index.
D F S ASCH Associated Chemicals F ASCH = GASOLINE Gr-Nr.: 1.17
D F S ASCR Associated Chemical Number F ASCR = 86290-81-5 Gr-Nr.: 1.18
Erscheint in der SHOW-Ausgabe im Feld ASCH
(F) S ASTD Atomspheric
Standards
F air quality/ASTD Gr-Nr.: 8.05.06
Basic Index.
(F) S ATMC Atomspheric
Concentrations
F air sample?/ATMC Gr-Nr.: 7.05.04
Basic Index.
(F) S ATOL Allowable
Tolerances
F cotton seed/ATOL Gr-Nr.: 8.03
Basic Index.
(F) S AUTO Autoignition
Temperature
F about 250 deg/AUTO Gr-Nr.: 4.03.05
Basic Index.
(F) S AVDI Average Daily Intake F estimated daily/AVDI Gr-Nr.: 7.06.02
Basic Index.
(F) S BHL Biological
Half-Life
F terminal half lives/BHL Gr-Nr.: 5.12.03
Basic Index.
(F) S BIOC Bioconcentration F marine mussel/BIOC Gr-Nr.: 7.04.01
Basic Index.
(F) S BIOD Biodegradation F sediment mixture?/BIOD Gr-Nr.: 7.03.01
Basic Index.
(F) S BION Bionecessity F micronutritient/BION Gr-Nr.: 6.01
Basic Index.
(F) S BODY Body Burden F kidney/BODY Gr-Nr.: 7.06.04
Basic Index.
(F) S BP Boiling Point F 254 deg c/BP Gr-Nr.: 3.04
Basic Index.
(F) S CARE Evidence for Carcinogenicity F evidence in humans: inadequate/care Gr-Nr.: 5.01
(F) S CERC CERCLA
Reportable
Quantities
F nrc/CERC Gr-Nr.: 8.06
Basic Index.
(F) S CHEM Chemical/Physical Properties F pressure/CHEM Gr-Nr.: 3.00
Feldgruppe. Anordnung der Felder: siehe hierarchische Tabelle.
(F) S CLAB Clinical
Laboratory Methods
F chromatograph?/CLAB Gr-Nr.: 9.03
Basic Index.
(F) S CLUP Cleanup Methods F ventilate area/CLUP Gr-Nr.: 4.12
Basic Index.
(F) S COFO Color/Form F yellow liquid/COFO Gr-Nr.: 3.01
Basic Index.
(F) S CORR Corrosivity F noncorrosive/CORR Gr-Nr.: 3.06
Basic Index.
(F) S CPAT Consumption
Pattern
F biocidal use/CPAT Gr-Nr.: 2.07
Basic Index.
D F S CR CAS Registry Number F CR=112-35-6
F TE=112-35-6
Gr-Nr.: 1.05
Ist Bestandteil von TE und kann auch mit TE gesucht werden.
(F) S CTP Critical
Temperature and Pressure
F critical pressure/CTP Gr-Nr.: 3.07
Basic Index.
(F) S CWA Clean Water Act Requirements F saltwater aquatic organisms/CWA Gr-Nr.: 8.05.05
S DAT Datamaintenance    
(F) S DCMP Decomposition F toxic fumes/DCMP Gr-Nr.: 4.06.02
Basic Index.
(F) S DEN Density/Specific Gravity F "1.17 at 25 deg C"/DEN Gr-Nr.: 3.08
Basic Index.
(F) S DISP Disposal Method F sealed containers/DISP Gr-Nr.: 4.13
Basic Index.
(F) S DOT DOT Emergency Guidelines F poisonous/DOT Gr-Nr.: 4.02
Basic Index.
(F) S DSC Dissociation
Constants
DSC: pk 5.59 at 15 deg C Gr-Nr.: 3.09
Basic Index.
(F) S EFFL Effluent
Concentrations
F wastewater/EFFL Gr-Nr.: 7.05.02
Basic Index.
(F) S ENTP Environmental Transport F phytoplankton/ENTP Gr-Nr.: 7.04.00
Basic Index.
(F) S ENVC Environmental Concentrations F subsurface water/ENVC Gr-Nr.: 7.05.00
Basic Index.
(F) S ENVH Environmental Exposure, Human F contamination/ENVH Gr-Nr.: 7.06.00
Basic Index.
(F) S ENVI Environmental Fate/Exposure Potential F groundwater/ENVI Gr-Nr.: 7.00
Feldgruppe. Anordnung der Felder: siehe hierarchische Tabelle.
(F) S ENVS Environment Fate/Exposure Summary F emmissions/ENVS Gr-Nr.: 7.01
Basic Index.
(F) S ENVT Environmental Transformation F biodegradat?/ENVT Gr-Nr.: 7.03.00
Basic Index.
(F) S EQUP Equipment and Clothing,
Protective
F gloves/EQUP Gr-Nr.: 4.08.01
Basic Index.
(F) S ETXV Ecotoxicity Values F lc50/ETXV Gr-Nr.: 5.07.03
Basic Index.
(F) S EVAP Relative Evaporation Rate F evaporation loss/EVAP Gr-Nr.: 3.19
Basic Index.
(F) S EX Excerpts, Toxicity F leukemia/EX Gr-Nr.: 5.06.00
Basic Index.
(F) S EXPL Explosive Limits and Potential F limit in air/EXPL Gr-Nr.: 4.05
Basic Index.
(F) S EXPT Exports, USA EXPT: (1985) 3.70x10+9 g Gr-Nr.: 2.10
Basic Index.
(F) S FATE Environmental Fate F terrestrial/FATE Gr-Nr.: 7.02.03
Basic Index.
(F) S FDA FDA Requirements F food additive?/FDA Gr-Nr.: 8.10
Basic Index.
(F) S FDWG Federal Drinking Water Guidelines F nitrite/FDWG Gr-Nr.: 8.05.02
(F) S FDWS Federal Drinking Water Standards F lead/FDWS Gr-Nr.: 8.05.01
F FF Formula
Fragments,
Molecular
F FF=(c2 and cl2) Sucht nach Bestandteilen der Molekularformel MF
(F) S FIFR FIFRA
Requirements
F prohibit?/FIFR Gr-Nr.: 8.09
Basic Index.
(F) S FIRE Fire Fighting
Information
F extinguish?/FIRE Gr-Nr.: 4.04.00
Basic Index.
(F) S FIRP Fire Fighting
Procedures
F carbon dioxide/FIRP Gr-Nr.: 4.04.01
Basic Index.
(F) S FISH Fish/Seafood
Concentrations
F surface waters/FISH Gr-Nr.: 7.05.07
Basic Index.
(F) S FLAM Flammable
Properties
F water spray/FLAM Gr-Nr.: 4.03.00
Basic Index.
(F) S FLMT Flammable Limits FLMT: 1.3%(l ower limit)...... Gr-Nr.: 4.03.03
Basic Index.
(F) S FLPT Flash Point F open cup/FLPT Gr-Nr.: 4.03.04
Basic Index.
(F) S FOOD Food Survey Values F dairy products/FOOD Gr-Nr.: 7.05.05
Basic Index.
(F) S FORM Formulations/
Preparations
F detergent additive/FORM Gr-Nr.: 2.03
Basic Index.
(F) S FPOT Fire Potential F combustible/FPOT Gr-Nr.: 4.03.01
Basic Index.
(F) S HAZA Hazardous
Reactions
F acid fumes/HAZA Gr-Nr.: 4.06.00
Basic Index.
D F² S HAZN EPA Hazardous Wastes No. F HAZN=DOO3?  
(F) S HAZS Hazards Summary F contact burns/HAZS Gr-Nr.: 4.01
Basic Index.
(F) S HIST Prior History of
Accidents
F (poisoning? AND france)/HIST Gr-Nr.: 10.03
Basic Index.
(F) S HTC Heat of
Combustion
F "424.5 kcal(liquid)"/HTC Gr-Nr.: 3.10
Basic Index.
(F) S HTOX Human Toxicity Excerpts F systemic poisoning/HTOX Gr-Nr.: 5.06.01
Basic Index.
(F) S HTV Heat of
Vaporization
F "1390 J/mol"/HTV Gr-Nr.: 3.11
Basic Index.
(F) S HTXV Human Toxicity Values F human inhalation/HTXV Gr-Nr.: 5.07.01
Basic Index.
(F) S IDEN Identification of Substance F benzene/IDEN Gr-Nr.: 1.00
Feldgruppe.Anordnung der Felder: siehe hierarchische Tabelle.
(F) S IDIO Drug Idiosyncracies F anaphylactic shock/IDIO Gr-Nr.: 6.04
Basic Index.
(F) S IDLH Immediately
Dangerous to Life/Health
F human carcinogen/IDLH Gr-Nr.: 8.01
Basic Index.
(F) S IMP Impurities F purity/IMP Gr-Nr.: 2.02
Basic Index.
(F) S IMPT Imports, USA F "(2001) 27,996kg"/IMPT Gr-Nr.: 2.09
Basic Index.
(F) S INTC Interactions F supra additive/INTC Gr-Nr.: 5.12.05
Basic Index.
(F) S KOC Soil Adsorption/ Mobility F harbor sediment/KOC Gr-Nr.: 7.04.02
Basic Index.
D F S LR Last Revision Date F LR=20021120 Gr-Nr.: 0.01.02
Format JJJJMMTT.
(F) S MANU Manufacturing/Use Information F german?/MANU Gr-Nr.: 2.00
Feldgruppe. Anordnung der Felder; siehe hierarchische Tabelle.
(F) S MEDS Medical
Surveillance
F work histor?/MEDS Gr-Nr.: 5.04
Basic Index.
(F) S METB Metabolism/
Metabolites
F gastrointestinal/METB Gr-Nr.: 5.12.02
Basic Index.
D F S MF Molecular Formula F MF=c7-h16-04  
(F) S MFS Manufacturers F du Pont/MFS Gr-Nr.: 2.04
Basic Index.
(F) S MILK Milk
Concentrations
F breast milk/MILK Gr-Nr.: 7.05.09
Basic Index.
(F) S RFD Reported Fatal Dose
F (lethal or fatal)/RFD Gr-Nr.: 5.08
Basic Index.
(F) S MMFG Methods of
Manufacturing
F hydrolysis/MMFG Gr-Nr.: 2.01
Basic Index.
(F) S MONI Monitoring and Analysis Methods F chromatogr?/MONI Gr-Nr.: 9.00
Feldgruppe. Anordnung der Felder: siehe hierarchische Tabelle.
(F) S MP Melting/Freezing Point F"37.5 deg C"/MP Gr-Nr.: 3.05
Basic Index.
D F S MW Molecular Weight F MW=164.23 Gr-Nr.: 1.15
Numerisch invertiert. Bereichssuchen möglich.
    F MW=16 to 22 Keine Maskierung im FIND-Kommando möglich.
D F S MWN Molecular Weight, Non-Standard F MWN= average? Gr-Nr.:  1.16
(F) S MXDD Maximum Drug Dose F infant?/MXDD Gr-Nr.:  6.06 Basic Index.
D F S NAME Name of Substance F TE= triethylene glycol monomethyl ether
F NAME= triethylene glycol monomethyl ether
Gr-Nr.:  1.02
Basic Index. Ist Bestandteil von TE und kann auch mit TE gesucht werden.
(F) S NATS Naturally
Occurring Sources
F anthropogenic/NATS Gr-Nr.: 7.02.01
Basic Index.
D F S ND Number of
Document
F ND=HS001185  
(F) S NFPA NFPA Hazard Classification F health hazard/NFPA Gr-Nr.: 4.03.02
Basic Index.
(F) S NREC NIOSH
Recommendations
F time weighted avg/NREC Gr-Nr.: 8.04.02
Basic Index.
(F) S NTOX Non-human
Toxicity Excerpts
F wistar rats?/NTOX Gr-Nr.: 5.06.02
Basic Index.
(F) S NTP National Toxicology Program Result F evidence of carcinogenic activity/NTP Gr-Nr.: 5.09
(F) S NTXV Non-human
Toxicity Values
F ld50 rat oral/NTXV Gr-Nr.: 5.07.02
Basic Index.
(F) S OCCU Occupational
Permissible Levels
F twa/OCCU Gr-Nr.: 8.04.00
Basic Index.
(F) S OCPP Other Chemical/Physical Properties F critical volume/OCPP Gr-Nr.: 3.21
Basic Index.
(F) S ODOR Odor F mild ethereal/ODOR Gr-Nr.: 3.02
Basic Index.
(F) S ODRT Odor Threshold F detection in air/ODRT Gr-Nr.: 4.07.01
Basic Index.
(F) S OEVC Other
Environmental Concentrations
F marine algae/OEVC Gr-Nr.: 7.05.10
Basic Index.
(F) S OFHZ Other Fire Fighting Hazards F heavier than air/OFHZ Gr-Nr.: 4.04.04
Basic Index.
(F) S OHAZ Other Hazardous Reactions F burning/OHAZ Gr-Nr.: 4.06.04
Basic Index.
(F) S OMIN Other
Manufacturing Information
F sulfur removal/OMIN Gr-Nr.: 2.05
Basic Index.
(F) S OOPL Other
Occupational
Permissible Levels
F mpc/OOPL Gr-Nr.: 8.04.04
Basic Index.
(F) S OPRM Other Preventative Measures F (remov? AND clothing)/OPRM Gr-Nr.: 4.08.02
Basic Index.
(F) S OSHA OSHA Standards F acceptable ceiling concentration/OSHA Gr-Nr.: 8.04.01
Basic Index.
(F) S PH PH Value F alkaline/PH Gr-Nr.: 3.13
Basic Index.
(F) S PHAR Pharmacology F water/PHAR Gr-Nr.: 6.00
Feldgruppe. Anordnung der Felder: siehe hierarchische Tabelle.
(F) S PKIN Pharmacokinetics F brain retention/PKIN Gr-Nr.: 5.12.00
Basic Index.
(F) S PLNT Plant
Concentrations
F ambient algae/PLNT Gr-Nr.: 7.05.06
Basic Index.
(F) S POLL Pollution Sources F fuel combustion/POLL Gr-Nr.: 7.02.00
Basic Index.
(F) S POLY Polymerization F hazardous/POLY Gr-Nr.: 4.06.03
Basic Index.
(F) S POPL Populations at
Special Risk
F nursing mothers/POPL Gr-Nr.: 5.11
Basic Index.
(F) S PREV Preventive
Measures
F face shields/PREV Gr-Nr.: 4.08.00
Basic Index.
(F) S PROD Production, USA F (stopped OR discontinued) /PROD Gr-Nr.: 2.08
Basic Index.
(F) S RADL Radiation Limits and Potential F alpha particles/RADL Gr-Nr.: 4.14
Basic Index.
(F) S RCRA RCRA
Requirements
F waste regulations/RCRA Gr-Nr.: 8.08
Basic Index.
(F) S REAC Reactivities and Incompatibilities F explosion?/REAC Gr-Nr.: 4.06.01
Basic Index.
(F) S REFE References,
Additional
F drinking water/REFE Gr-Nr.: 10.00
Feldgruppe. Anordnung der Felder: siehe hierarchische Tabelle.
D F S RELT Related HSDB Records F RELT="1096 (nickel)" Gr-Nr.: 1.07
D F 2 S RF References F RF= iarc monographs F RF= cancer res  
(F) S RFD Reported Fatal Dose Level F (lethal or fatal)/RFD Gr-Nr.: 5.08
Basic Index.
(Frühere Feldbezeichnung bis 1/11:
MINF= Minimal Fetal Dose
S RL Record Length RL:19887 Gr-Nr.: 0.01.05
(F) S RPTS Reports, Special F process wastes/RPTS Gr-Nr.: 10.01
Basic Index.
(F) S RTEX Probable Routes of Human
Exposure
F contaminated fish/RTEX Gr-Nr.: 7.06.01
Basic Index.
D F S RVDT Review Date F RVDT=20020126 Format JJJJMMTT
(F) S SAFE Safety and
Handling
F water/ SAFE Gr-Nr.: 4.00
Feldgruppe. Anordnung der Felder: siehe hierarchische Tabelle.
(F) S SAMP Sampling
Procedures
F employee exposure/SAMP Gr-Nr.: 9.01
Basic Index.
(F) S SDWG State Drinking Water Guidelines F nitrite/SDWG Gr-Nr.: 8.05.04
(F) S SDWS State Drinking Water Standards F lead/SDWS Gr-Nr.: 8.05.03
(F) S SEDS Sediment/Soil Concentrations F surface water/SEDS Gr-Nr.: 7.05.03
Basic Index.
(F) S SERI Skin, Eye and Respiratory
Irritations
F irritating/SERI Gr-Nr.: 4.07.02
Basic Index.
(F) S SHIP Shipment Methods and Regulations F hazardous/SHIP Gr-Nr.: 4.10
Basic Index.
D F S SHPN Shipping Name/Number F SHPN=imo 2.0  
(F) S SOL Solubilities F hot water/SOL Gr-Nr.: 3.14
Basic Index.
(F) S SPEC Spectral Properties F rotation/SPEC Gr-Nr.: 3.15
Basic Index.
(F) S SSL Stability/Shelf Life F instability/SSL Gr-Nr.: 4.09
Basic Index.
(F) S SSTD Soil Standards F solid waste/SSTD Gr-Nr.: 8.05.07
Basic Index.
(F) S STAN Standards/
Regulations for Exposure
F germany/STAN Gr-Nr.: 8.00
Feldgruppe. Anordnung der Felder: siehe hierarchische Tabelle.
(F) S STAO Standards and Regulations, Others F clean water act/STAO Gr-Nr.: 8.05.00
Basic Index.
D F S STCC Standard Transportation Comodity Code Number F STCC=49 232 75 Gr-Nr.: 1.13
(F) S STRG Storage Conditions F avoid direct sunlight/STRG Gr-Nr.: 4.11
Basic Index.
(F) S SURF Surface Tension F "27.53 dynes/cm"/SURF Gr-Nr.: 3.16
Basic Index.
D F S SY Synonyms F SY=benzene Gr-Nr.: 1.03
Basic Index.
    F TE=benzene Ist Bestandteil von TE und kann auch mit TE gesucht werden
(F) S TAST Taste F bitter/TAST Gr-Nr.: 3.03
Basic Index.
(F) S TCAT TSCA Test Submissions F acute dermal toxicity/tcat Gr-Nr.: 5.10
D F S TE Terminology F TE= triethylene glycol monomethyl ether Gr-Nr.: 1.01
erstreckt sich über NAME;SY;CR.
(F) S TEST Test Status F ntp/TEST Gr-Nr.: 10.02
Basic Index.
(F) S THER Therapeutic Uses F dyskinesia/THER Gr-Nr.: 6.02
Basic Index.
(F) S TLV Threshold Limit Values F worker exposure/TLV Gr-Nr.: 8.04.03
Basic Index.
(F) S TOLR Drug Tolerance F cns depression/TOLR Gr-Nr.: 6.05
Basic Index.
(F) S TOXC Toxic Combustion Products F toxic fume?/TOXC Gr-Nr.: 4.04.03
Basic Index.
(F) S TOXI Toxicity/
Biomedical Effects
F (rat AND ld50)/TOXI Gr-Nr.: 5.00
Feldgruppe. Anordnung der Felder: siehe hierarchische Tabelle.
(F) S TOXS Toxicity Summary F dermal/TOXS Gr-Nr.: 5.02
Basic Index.
(F) S TOXV Toxicity Values F ld50 rat/TOXV Gr-Nr.: 5.07.00
Basic Index.
(F) S TSCA TSCA
Requirements
F tsca inventory/TSCA Gr-Nr.: 8.07
Basic Index.
(F) S USE Major Use F fungicid?/USE Gr-Nr.: 2.06
Basic Index.
D F S UPDT Update History F UPDT=20010808 Gr-Nr.: 0.01.03
Format: JJJJMMTT
(F) S VAP Vapor Pressure F "0.97 mm Hg at 25 deg C"/VAP Gr-Nr.: 3.18
Basic Index.
(F) S VAPD Vapor Density F "3-4(AIR=1)"/VAPD Gr-Nr.: 3.17
Basic Index.
(F) S VISC Viscosity F "4.179 cP"/VISC Gr-Nr.: 3.20
Basic Index.
(F) S VWS Volatilization from Water/Soil F surface soil/VWS Gr-Nr.: 7.04.03
Basic Index.
(F) S WARN Warnings, Drug F pregnan?/WARN Gr-Nr.: 6.03
Basic Index.
(F) S WARP Warning Properties F (detection OR recognition)/WARP Gr-Nr.: 4.07.00
Basic Index.
(F) S WATC Water
Concentrations
F seawater/WATC Gr-Nr.: 7.05.01
Basic Index.

 

Datenfelder, systematisch

Anordnung in der Dokumentationseinheit

Erläuterungen:

D = DISPLAY F = FIND S = SHOW
1 : Front-End-Maskierung wird empfohlen
2 : Wort für Wort mit Feldbezeichnung suchbar
3 : nur selektiv suchbar
(F): Feld ist nur freitext suchbar (siehe Basic Index)

Gruppen- Nr. Feldbezeichnung Kommando
0.00 ++ DAT Datamaintenance S
0.01.01 + ND Number of Document D F S
0.01.02 LR Last Revision Date D F S
0.01.03 UPDT Update History D F S
0.01.04 RVDT Review Date D F S
0.01.05 RL Record Length S
1.00 ++ IDEN Identification of Substance (F) S
1.01 TE Terminology D F S
1.02 NAME Name of Substance D F S
1.03 SY Synonyms D F S
1.05 CR CAS Registry Number D F S
1.07 RELT Related HSDB Records D F S
1.08 MF Molecular Formula D (F) S
1.09 FF Formula Fragments, Molecular F
1.12 SHPN Shipping Name/Number D F S
1.13 STCC Standard Transportation Comodity Code Number D F S
1.14 HAZN EPA Hazardous Wastes No. D F S
1.15 MW Molecular Weight D F S
1.16 MWN Molecular Weight, Non-Standard D F S
1.17 ASCH Associated Chemicals D F S
1.18 ASCR Associated Chemical Number D F S
2.00 ++ MANU Manufacturing/Use Information (F) S
2.01 MMFG Methods of Manufacturing (F) S
2.02 IMP Impurities (F) S
2.03 FORM Formulations/Preparations (F) S
2.04 MFS Manufacturers (F) S
2.05 OMIN Other Manufacturing Information (F) S
2.06 USE Major Use (F) S
2.07 CPAT Consumption Pattern (F) S
2.08 PROD Production, USA (F) S
2.09 IMPT Imports, USA (F) S
2.10 EXPT Exports, USA (F) S
2.99 RF References D F2 S
3.00 ++ CHEM Chemical/Physical Properties (F) S
3.01 COFO Color/Form (F) S
3.02 ODOR Odor (F) S
3.03 TAST Taste (F) S
3.04 BP Boiling Point (F) S
3.05 MP Melting/Freezing Point S
3.06 CORR Corrosivity (F) S
3.07 CTP Critical Temperature and Pressure (F) S
3.08 DEN Density/Specific Gravity (F) S
3.09 DSC Dissociation Constants (F) S
3.10 HTC Heat of Combustion (F) S
3.11 HTV Heat of Vaporization (F) S
3.12 OWPC Octanol/Water Partition Coefficient (F) S
3.13 PH PH Value (F) S
3.14 SOL Solubilities (F) S
3.15 SPEC Spectral Properties (F) S
3.16 SURF Surface Tension (F) S
3.17 VAPD Vapor Density (F) S
3.18 VAP Vapor Pressure (F) S
3.19 EVAP Evaporation Rate, Relative (F) S
3.20 VISC Viscosity (F) S
3.21 OCPP Other Chemical/Physical Properties (F) S
3.99 RF References D F 2 S
4.00 ++ SAFE Safety and Handling (F) S
4.01 HAZS Hazards Summary (F) S
4.02 DOT DOT Emergency Guidelines (F) S
4.03.00 + FLAM Flammable Properties (F) S
4.03.01 FPOT Fire Potential (F) S
4.03.02 NFPA NFPA Hazard Classification (F) S
4.03.03 FLMT Flammable Limits (F) S
4.03.04 FLPT Flash Point (F) S
4.03.05 AUTO Autoignition Temperature (F) S
4.04.00 + FIRE Fire Fighting Information (F) S
4.04.01 FIRP Fire Fighting Procedures (F) S
4.04.03 TOXC Toxic Combustion Products (F) S
4.04.04 OFHZ Other Fire Fighting Hazards (F) S
4.05 EXPL Explosive Limits and Potential (F) S
4.06.00 + HAZA Hazardous Reactions (F) S
4.06.01 REAC Reactivities and Incompatibilities (F) S
4.06.02 DCMP Decomposition (F) S
4.06.03 POLY Polymerization (F) S
4.06.04 OHAZ Other Hazardous Reactions (F) S
4.07.00 + WARP Warning Properties (F) S
4.07.01 ODRT Odor Threshold (F) S
4.07.02 SERI Skin, Eye and Respiratory Irritations (F) S
4.08.00 + PREV Preventive Measures (F) S
4.08.01 EQUP Equipment and Clothing, Protective (F) S
4.08.02 OPRM Other Preventive Measures (F) S
4.09 SSL Stability/Shelf Life (F) S
4.10 SHIP Shipment Methods and Regulations (F) S
4.11 STRG Storage Conditions (F) S
4.12 CLUP Cleanup Methods (F) S
4.13 DISP Disposal Method (F) S
4.14 RADL Radiation Limits and Potential (F) S
4.99 RF References D F 2 S
5.00 ++ TOXI Toxicity/Biomedical Effects (F) S
5.01 CARE Evidence for Carcinogenicity (F) S
5.02 TOXS Toxicity Summary (F) S
5.03 ANTR Antidote and Emergency Treatment (F) S
5.04 MEDS Medical Surveillance (F) S
5.06.00 + EX Excerpts, Toxicity (F) S
5.06.01 HTOX Human Toxicity Excerpts (F) S
5.06.02 NTOX Non-human Toxicity Excerpts (F) S
5.07.00 + TOXV Toxicity Values (F) S
5.07.01 HTXV Human Toxicity Values (F) S
5.07.02 NTXV Non-human Toxicity Values (F) S
5.07.03 ETXV Ecotoxicity Values (F) S
5.08 RFD Reported Fatal Dose (bis 1/11: MINF Minimun Fatal Dose Level) (F) S
5.09 NTP National Toxicology Program Results (F) S
5.10 TCAT TSCA Test Submissions (F) S
5.11 POPL Populations at Special Risk (F) S
5.12.00 + PKIN Pharmacokinetics (F) S
5.12.01 ADE Absorption, Distribution and Excretion (F) S
5.12.02 METB Metabolism/Metabolites (F) S
5.12.03 BHL Biological Half-Life (F) S
5.12.04 ACTN Mechanism of Action (F) S
5.12.05 INTC Interactions (F) S
5.99 RF References D F 2 S
6.00 ++ PHAR Pharmacology (F) S
6.01 BION Bionecessity (F) S
6.02 THER Therapeutic Uses (F) S
6.03 WARN Drug Warnings (F) S
6.04 IDIO Drug Idiosyncrasies (F) S
6.05 TOLR Drug Tolerance (F) S
6.06 MXDD Maximum Drug Dose (F) S
6.99 RF References D F 2 S
7.00 ++ ENVI Environmental Fate/Exposure Potential (F) S
7.01 ENVS Environmental Fate/Exposure Summary (F) S
7.02.00 + POLL Pollution Sources (F) S
7.02.01 NATS Naturally Occurring Sources (F) S
7.02.02 ARTS Artificial Sources (F) S
7.02.03 FATE Environmental Fate (F) S
7.03.00 + ENVT Environmental Transformation (F) S
7.03.01 BIOD Biodegradation (F) S
7.03.02 ABIO Abiotic Degradation (F) S
7.04.00 + ENTP Environmental Transport (F) S
7.04.01 BIOC Bioconcentration (F) S
7.04.02 KOC Soil Adsorption/ Mobility (F) S
7.04.03 VWS Volatilization from Water/Soil (F) S
7.05.00 + ENVC Environmental Concentrations (F) S
7.05.01 WATC Water Concentrations (F) S
7.05.02 EFFL Effluent Concentrations (F) S
7.05.03 SEDS Sediment/Soil Concentrations (F) S
7.05.04 ATMC Atomspheric Concentrations (F) S
7.05.05 FOOD Food Survey Values (F) S
7.05.06 PLNT Plant Concentrations (F) S
7.05.07 FISH Fish/Seafood Concentrations (F) S
7.05.08 ANML Animal Concentrations (F) S
7.05.09 MILK Milk Concentrations (F) S
7.05.10 OEVC Other Environmental Concentrations (F) S
7.06.00 + ENVH Environmental Exposure, Human (F) S
7.06.01 RTEX Probable Routes of Human Exposure (F) S
7.06.02 AVDI Average Daily Intake (F) S
7.06.04 BODY Body Burden (F) S
7.99 RF References D F 2 S
8.00 ++ STAN Standards/Regulations for Exposure (F) S
8.01 IDLH Immediately Dangerous to Life/Health (F) S
8.02 ADI Acceptable Daily Intakes (F) S
8.03 ATOL Allowable Tolerances (F) S
8.04.00 + OCCU Occupational Permissible Levels (F) S
8.04.01 OSHA OSHA Standards (F) S
8.04.02 NREC NIOSH Recommendations (F) S
8.04.03 TLV Threshold Limit Values (F) S
8.04.04 OOPL Other Occupational Permissible Levels (F) S
8.05.00 + STAO Standards and RegulationS, Others (F) S
8.05.01 FDWS Federal Drinking Water Standards (F) S (F) S
8.05.02 FDWG Federal Drinking Water Guidelines (F) S
8.05.03 SDWS State Drinking Water Standards (F) S
8.05.04 SDWG State Drinking Water Guidelines (F) S
8.05.05 CWA Clean Water Act Requirements (F) S
8.05.06 ASTD Atomspheric Standards (F) S
8.05.07 SSTD Soil Standards (F) S
8.06 CERC CERCLA Reportable Quantities (F) S
8.07 TSCA TSCA Requirements (F) S
8.08 RCRA RCRA Requirements (F) S
8.09 FIFR FIFRA Requirements (F) S
8.10 FDA FDA Requirements (F) S
8.99 RF References D F 2 S
9.00 ++ MONI Monitoring and Analysis Methods (F) S
9.01 SAMP Sampling Procedures (F) S
9.02 ALAB Analytic Laboratory Methods (F) S
9.03 CLAB Clinical Laboratory Methods (F) S
9.99 RF References D F 2 S
10.00 ++ REFE References, Additional (F) S
10.01 RPTS Reports, Special (F) S
10.02 TEST Test Status (F) S
10.03 HIST History of Accidents, Prior (F) S
10.99 RF References D F 2 S
Ausgabe der Suchergebnisse

Mit den Ausgabekommandos: SHOW (S) / MAIL.

Je nach Copyrightbestimmung muss der Parameter USE= DLOAD hinzugefügt werden.

Aus den gefundenen Dokumenten können alle Datenfelder, einzelne Datenfelder oder Gruppen von Datenfeldern angefordert werden. Werden die auszugebenden Felder im Kommando nicht explizit angegeben, so wird in allen Ausgabekommandos die Menge Contents (F=Contents) ausgegeben. Bei dieser Menge werden die Feldgruppen und Untergruppen ohne Feldinhalt ausgegeben. Die Feldinhalte können mit dem Befehl SHOW F= Feldbezeichnung aufgerufen werden.

Feldmengen bei der Ausgabe:

Kommando Ausgabe zugehörige Datenfelder
F=STD Standard Wie F= CONTENTS
F= ALL alle Datenfelder DAT, IDEN, MANU, CHEM, SAFE, TOXI, PHAR, ENVI, , STAN, MONI, REFE
F= CONTENTS   DAT, IDEN mit Feldinhalt; die Feldgruppen MANU, CHEM, SAFE, TOXI, PHAR, ENVI, STAN, MONI, REFE ohne Daten
Suchbeispiel(e)

Mögliche Auswahl der Datenbank in der DIMDI ClassicSearch: SBAS HS00

Thema: Substanzsuche

Die Recherche nach Substanzen kann erfolgen

1) mit dem Deskriptor TE (TERMINOLOGY), mit dem die Felder NAME, SYNONYMS und CR abgesucht werden:

FIND TE = PHENOL

2) über die CAS- Registry Number (CR)

FIND CR = 50-00-0

3) im Freitext in den Feldern NAME und SYNONYMS

FIND   (CHLORO   AND   NITRO   AND   PHENOL)/(NAME;SY)

Thema: Konzeptsuche

Bei der Recherche nach Sachverhalten werden die entsprechenden Felder oder Feldgruppen über Freitext (FT) oder - sofern möglich - direkt abgesucht. Als Ergebnis erhält man die Substanzen, für die der gewünschte Sachverhalt zutrifft.

Beispiel: Suche nach dem biologischem Abbau von Substanzen im Boden.

Suchprofil:

Parameter Suchschritt Trefferanzahl Suchformulierung
C=  4670   HS00
S=  1364   (SOIL AND BIODEGRADAT?)/ENVI

Thema: Konzeptsuche: "LC50-Werte bei der Regenbogen-Forelle"

Die Ausgabe der Ergebnisse kann auf die relevanten Felder beschränkt werden, indem man den Befehl "F mem where" als Suchschritt an eine Recherche anschließt.

Parameter Suchschritt Trefferanzahl Suchformulierung
C=  4670   HS00 
S=  324   (LC50  AND RAINBOW TROUT)/TOXI 
  270   MEM  WHERE 2 
      ... 386 MEM in 270 Hits

Mit SHOW F=TE;MEM werden nur die Substanzterminologie und die Abschnitte ("MEMBERS") ausgegeben, die die beiden Suchbegriffe LC50 und RAINBOW TROUT enthalten.

Beispieldokument(e)

2/1 of 1 DIMDI: HSDB (HS00) © NLM

++ DAT    Datamaintenance
   ND DOCUMENT NUMBER HS002806
   MD MACHINE DATE 20090630
   LR LAST REVISION DATE 20030214
   UPDT LAST UPDATE 20030214
   RVDT REVIEW DATE 19950914
   RL RECORD LENGTH 51324
++ IDEN   Identification of Substance
   NAME   CHLOROTRIFLUOROETHYLENE
   CR CAS REGISTRY NUMBER 79-38-9
   SY SYNONYMS CFE; CHLORTRIFLUORAETHYLEN (GERMAN); CTFE; DAIFLON; ETHENE, CHLOROTRIFLUORO-; ETHYLENE, CHLOROTRIFLUORO-; ETHYLENE, TRIFLUOROCHLORO-; FLUOROPLAST 3; GENETRON 1113; MONOCHLOROTRIFLUOROETHYLENE; TRIFLUOROCHLORETHYLENE (DOT); TRIFLUOROCHLOROETHYLENE; 1,1,2-TRIFLUORO-2-CHLOROETHYLENE; TRIFLUOROMONOCHLOROETHYLENE; TRIFLUOROVINYL CHLORIDE; TRITHENE
   MF MOLECULAR FORMULA C2-Cl-F3
   SHPN SHIPPING NAME/NUMBER UN 1082; Trifluorochloroethylene, inhibited; IMO 2.3; Trifluorochloroethylene, inhibited
   MW MOLECULAR WEIGHT 116.4700
++ MANU   Manufacturing and Use Information
MMFG METHODS OF MANUFACTURING ** Chlorotrifluoroethylene is produced commercially by dechlorination of 1,1,2-trichloro-1,2,2-trifluoroethane, with zinc in methanol. An alternative route is dechlorination in the gas phase, eg, on an aluminum fluoride-nickel phosphate catalyst; this catalyst is highly stable. [Gerhartz, W. (exec ed.). Ullmann's Encyclopedia of Industrial Chemistry. 5th ed.Vol A1: Deerfield Beach, FL: VCH Publishers, 1985 to Present., p. VA11 364]
FORM FORMULATIONS/PREPARATIONS ** GRADES: TECHNICAL, 99.0% [Lewis, R.J., Sr (Ed.). Hawley's Condensed Chemical Dictionary. 12th ed. New York, NY: Van Nostrand Rheinhold Co., 1993, p. 274]
MFS MANUFACTURERS ** PCR Inc, Hq, PO Box 1466, Gainesville, FL 32602, (904) 376-8246; Production site: Gainesville, FL 32601 [SRI. 1994 Directory of Chemical Producers -United States of America. Menlo Park, CA: SRI International, 1994., p. 523]
    ** Allied Signal Inc 101 Columbia Road PO Box 1057 Morristown, NJ 07962 (201) 455-2000. Allied Signal Engineered Materials. Production Site: Lupine and Ontario Streets Baton Rouge, LA 70805 [SRI. 1994 Directory of Chemical Producers -United States of America. Menlo Park, CA: SRI International, 1994., p. 523]
OMIN OTHER MANUFACTURING INFORMATION ** SELECTION OF PLASTIC FILMS FOR FOOD PACKAGING. [OSWIN CR; FOOD CHEM 8 (2): 121 (1982)]
    ** 1,1,2-TRIFLUORO-1-BROMO-2-CHLOROETHANE WAS DEHYDROBROMINATED TO FORM TOXIC TRIFLUOROCHLOROETHYLENE WHEN THE FLUOROCARBON ANESTHETIC WAS USED IN CONJUNCTION WITH SODA LIME IN ANESTHESIA. [HU C; YOUJI HUAXUE 5: 357 (1981)]
USE USE/MAJOR ** INTERMEDIATE; MONOMER FOR CHLOROTRIFLUOROETHYLENE RESINS [Lewis, R.J., Sr (Ed.). Hawley's Condensed Chemical Dictionary. 12th ed. New York, NY: Van Nostrand Rheinhold Co., 1993, p. 274]
    ** Chloro trifluoroethylene is polymerized to produce Kel-F /extremely chemically inert material/ [CONSIDINE. CHEMICAL AND PROCESS TECHNOL ENCYC 1974 p.280]
    ** Chloro trifluoroethylene is used extensively in the synthesis of high performance lubricants, plastics and elastomers [CONSIDINE. CHEMICAL AND PROCESS TECHNOL ENCYC 1974 p.286]
    ** Bromination of chlorotrifluoroethylene is the convenient way to prepare bromotrifluoroethylene with high yield [Kirk-Othmer Encyclopedia of Chemical Technology. 3rd ed., Volumes 1-26. New York, NY: John Wiley and Sons, 1978-1984., p. V11 55]
    ** Chlorotrifluoroethylene is a starting material for homopolymers and copolymers the latter are commercially available under the trade name Halar (Allied). Chlorotrifluoroethylene is an intermediate in the production of the inhalation anesthetic halothane. An addition product of chlorotrifluoroethylene with diethylamine,(2-chloro-1,1,2-trifluoroethyl)-diethylamine, is used as a fluorinating agent to replace hydroxyl groups in steroids and carbohydrates with fluorine. Chlorotrifluoroethylene is used in telomerization with carbon tetrachloride or chloroform for use as inert fluids, hydraulic fluids, or lubricants. [Lewis, R.J., Sr (Ed.). Hawley's Condensed Chemical Dictionary. 12th ed. New York, NY: Van Nostrand Rheinhold Co., 1993, p. 365]
++ CHEM   Chemical and Physical Properties
COFO COLOR/FORM ** COLORLESS GAS [Lewis, R.J., Sr (Ed.). Hawley's Condensed Chemical Dictionary. 12th ed. New York, NY: Van Nostrand Rheinhold Co., 1993, p. 274]
ODOR ODOR ** FAINT ETHEREAL ODOR [Lewis, R.J., Sr (Ed.). Hawley's Condensed Chemical Dictionary. 12th ed. New York, NY: Van Nostrand Rheinhold Co., 1993, p. 274]
BP BOILING POINT ** -27.9 DEG C [Lewis, R.J., Sr (Ed.). Hawley's Condensed Chemical Dictionary. 12th ed. New York, NY: Van Nostrand Rheinhold Co., 1993, p. 274]
MP MELTING POINT ** -158.2 deg C [Gerhartz, W. (exec ed.). Ullmann's Encyclopedia of Industrial Chemistry. 5th ed.Vol A1: Deerfield Beach, FL: VCH Publishers, 1985 to Present., p. VA11 360]
CTP CRITICAL TEMPERATURE AND PRESSURE ** CRITICAL PRESSURE: 592 PSIA= 40.2 ATM= 4.08 MN/SQ M; CRITICAL TEMP: 223.2 DEG F= 106.2 DEG C= 379.4 DEG K [U.S. Coast Guard, Department of Transportation. CHRIS - Hazardous Chemical Data. Manual Two. Washington, DC: U.S. Government Printing Office, Oct., 1978., p. ]
DEN DENSITY/SPECIFIC GRAVITY ** 1.305 (LIQUID) @ 20 DEG C [Lewis, R.J., Sr (Ed.). Hawley's Condensed Chemical Dictionary. 12th ed. New York, NY: Van Nostrand Rheinhold Co., 1993, p. 274]
HTV HEAT OF VAPORIZATION ** 83 BTU/LB= 46 CAL/G= 1.92X10+5 J/KG [U.S. Coast Guard, Department of Transportation. CHRIS - Hazardous Chemical Data. Manual Two. Washington, DC: U.S. Government Printing Office, Oct., 1978., p. ]
SOL SOLUBILITIES ** Soluble in benzene, chloroform [Lide, D.R. (ed.). CRC Handbook of Chemistry and Physics. 75th ed. Boca Raton, Fl: CRC Press Inc., 1994-1995., p. 3-163]
SPEC SPECTRAL PROPERTIES ** IR: 6839 (Sadtler Research Laboratories IR Grating Collection) [Weast, R.C. and M.J. Astle. CRC Handbook of Data on Organic Compounds. Volumes I and II. Boca Raton, FL: CRC Press Inc. 1985., p. V1 621]
SURF SURFACE TENSION ** 12 DYNES/CM= 0.012 N/M @ 20 DEG C [U.S. Coast Guard, Department of Transportation. CHRIS - Hazardous Chemical Data. Manual Two. Washington, DC: U.S. Government Printing Office, Oct., 1978., p. ]
VAP VAPOR PRESSURE ** 4.592X10+3 mm Hg @ 25 deg C /calc from experimentally derived coeeficients/ [Daubert, T.E., R.P. Danner. Physical and Thermodynamic Properties of Pure Chemicals Data Compilation. Washington, D.C.: Taylor and Francis, 1989., p. ]
OCPP OTHER CHEMICAL/PHYSICAL PROPERTIES ** DECOMP IN WATER [Lewis, R.J., Sr (Ed.). Hawley's Condensed Chemical Dictionary. 12th ed. New York, NY: Van Nostrand Rheinhold Co., 1993, p. 274]
    ** FP: -157.5 DEG C [Lewis, R.J., Sr (Ed.). Hawley's Condensed Chemical Dictionary. 12th ed. New York, NY: Van Nostrand Rheinhold Co., 1993, p. 274]
++ SAFE   Safety and Handling
DOT DOT EMERGENCY GUIDELINES ** If ... THERE IS NO FIRE, go directly to the Table of Initial Isolation and Protective Action Distances /(see table below)/ ... to obtain initial isolation and protective action distances. IF THERE IS A FIRE, or IF A FIRE IS INVOLVED, go directly to the appropriate guide /(see guide(s) below)/ and use the evacuation information shown under PUBLIC SAFETY. /Trifluorochloroethylene; Trifluorochloroethylene, inhibited; Trifluorochloroethylene, stabilized/ <![CDATA[<table border="1"><b><center>Table of Isolation and Protective Action Distances for Trifluorochloroethylene</center></b>
    ** /GUIDE 119P: GASES - TOXIC - FLAMMABLE/ Health: TOXIC; may be fatal if inhaled or absorbed through skin. Contact with gas or liquefied gas may cause burns, severe injury and/or frostbite. Fire will produce irritating, corrosive and/or toxic gases. Runoff from fire control may cause pollution. /Trifluorochloroethylene; Trifluorochloroethylene, inhibited; Trifluorochloroethylene, stabilized/ [U.S. Department of Transportation. 2004 Emergency Response Guidebook. A Guide book for First Responders During the Initial Phase of a Dangerous Goods/Hazardous Materials Incident. Washington, D.C. 2004]
    ** /GUIDE 119P: GASES - TOXIC - FLAMMABLE/ Fire or Explosion: Flammable; may be ignited by heat, sparks or flames. May form explosive mixtures with air. Those substances designated with a "P" may polymerize explosively when heated or involved in a fire. Vapors from liquefied gas are initially heavier than air and spread along ground. Vapors may travel to source of ignition and flash back. Some of these materials may react violently with water. Cylinders exposed to fire may vent and release toxic and flammable gas through pressure relief devices. Containers may explode when heated. Ruptured cylinders may rocket. Runoff may create fire or explosion hazard. /Trifluorochloroethylene; Trifluorochloroethylene, inhibited; Trifluorochloroethylene, stabilized/ [U.S. Department of Transportation. 2004 Emergency Response Guidebook. A Guide book for First Responders During the Initial Phase of a Dangerous Goods/Hazardous Materials Incident. Washington, D.C. 2004]
    ** /GUIDE 119P: GASES - TOXIC - FLAMMABLE/ Public Safety: CALL Emergency Response Telephone Number ... . As an immediate precautionary measure, isolate spill or leak area for at least 100 meters (330 feet) in all directions. Keep unauthorized personnel away. Stay upwind. Many gases are heavier than air and will spread along ground and collect in low or confined areas (sewers, basements, tanks). Keep out of low areas. Ventilate closed spaces before entering. /Trifluorochloroethylene; Trifluorochloroethylene, inhibited; Trifluorochloroethylene, stabilized/ [U.S. Department of Transportation. 2004 Emergency Response Guidebook. A Guide book for First Responders During the Initial Phase of a Dangerous Goods/Hazardous Materials Incident. Washington, D.C. 2004]
    ** /GUIDE 119P: GASES - TOXIC - FLAMMABLE/ Protective Clothing: Wear positive pressure self-contained breathing apparatus (SCBA). Wear chemical protective clothing that is specifically recommended by the manufacturer. It may provide little or no thermal protection. Structural firefighters' protective clothing provides limited protection in fire situations ONLY; it is not effective in spill situations where direct contact with the substance is possible. /Trifluorochloroethylene; Trifluorochloroethylene, inhibited; Trifluorochloroethylene, stabilized/ [U.S. Department of Transportation. 2004 Emergency Response Guidebook. A Guide book for First Responders During the Initial Phase of a Dangerous Goods/Hazardous Materials Incident. Washington, D.C. 2004]
    ** /GUIDE 119P: GASES - TOXIC - FLAMMABLE/ Evacuation: ... Fire: If tank, rail car or tank truck is involved in a fire, ISOLATE for 1600 meters (1 mile) in all directions; also, consider initial evacuation for 1600 meters (1 mile) in all directions. /Trifluorochloroethylene; Trifluorochloroethylene, inhibited; Trifluorochloroethylene, stabilized/ [U.S. Department of Transportation. 2004 Emergency Response Guidebook. A Guide book for First Responders During the Initial Phase of a Dangerous Goods/Hazardous Materials Incident. Washington, D.C. 2004]
    ** /GUIDE 119P: GASES - TOXIC - FLAMMABLE/ Fire: DO NOT EXTINGUISH A LEAKING GAS FIRE UNLESS LEAK CAN BE STOPPED. Small fires: Dry chemical, CO2, water spray or alcohol-resistant foam. Large fires: Water spray, fog or alcohol-resistant foam. ... Move containers from fire area if you can do it without risk. Damaged cylinders should be handled only by specialists. Fire involving tanks: Fight fire from maximum distance or use unmanned hose holders or monitor nozzles. Cool containers with flooding quantities of water until well after fire is out. Do not direct water at source of leak or safety devices; icing may occur. Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank. ALWAYS stay away from tanks engulfed in fire. /Trifluorochloroethylene; Trifluorochloroethylene, inhibited; Trifluorochloroethylene, stabilized/ [U.S. Department of Transportation. 2004 Emergency Response Guidebook. A Guide book for First Responders During the Initial Phase of a Dangerous Goods/Hazardous Materials Incident. Washington, D.C. 2004]
    ** /GUIDE 119P: GASES - TOXIC - FLAMMABLE/ Spill or Leak: ELIMINATE all ignition sources (no smoking, flares, sparks or flames in immediate area). All equipment used when handling the product must be grounded. Fully encapsulating, vapor protective clothing should be worn for spills and leaks with no fire. Do not touch or walk through spilled material. Stop leak if you can do it without risk. Do not direct water at spill or source of leak. Use water spray to reduce vapors or divert vapor cloud drift. Avoid allowing water runoff to contact spilled material. ... If possible, turn leaking containers so that gas escapes rather than liquid. Prevent entry into waterways, sewers, basements or confined areas. Isolate area until gas has dispersed. /Trifluorochloroethylene; Trifluorochloroethylene, inhibited; Trifluorochloroethylene, stabilized/ [U.S. Department of Transportation. 2004 Emergency Response Guidebook. A Guide book for First Responders During the Initial Phase of a Dangerous Goods/Hazardous Materials Incident. Washington, D.C. 2004]
    ** /GUIDE 119P: GASES - TOXIC - FLAMMABLE/ First Aid: Move victim to fresh air. Call 911 or emergency medical service. Give artificial respiration if victim is not breathing. Do not use mouth-to-mouth method if victim ingested or inhaled the substance; give artificial respiration with the aid of a pocket mask equipped with a one-way valve or other proper respiratory medical device. Administer oxygen if breathing is difficult. Remove and isolate contaminated clothing and shoes. In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes. In case of contact with liquefied gas, thaw frosted parts with lukewarm water. In case of burns, immediately cool affected skin for as long as possible with cold water. Do not remove clothing if adhering to skin. Keep victim warm and quiet. Keep victim under observation. Effects of contact or inhalation may be delayed. Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves. /Trifluorochloroethylene; Trifluorochloroethylene, inhibited; Trifluorochloroethylene, stabilized/ [U.S. Department of Transportation. 2004 Emergency Response Guidebook. A Guide book for First Responders During the Initial Phase of a Dangerous Goods/Hazardous Materials Incident. Washington, D.C. 2004]
FPOT FIRE POTENTIAL ** VERY DANGEROUS, VIA HEAT, FLAMES (SPARKS) OR OXIDIZERS... [Sax, N.I. Dangerous Properties of Industrial Materials. 6th ed. New York, NY: Van Nostrand Reinhold, 1984., p. 781]
NFPA NFPA HAZARD CLASSIFICATION ** Flammability: 4. 4= This degree includes flammable gases, pyrophoric liquids, and Class IA flammable liquids. The preferred method of fire attack is to stop the flow of material or to protect exposures while allowing the fire to burn itself out. [Fire Protection Guide to Hazardous Materials. 12 ed. Quincy, MA: National Fire Protection Association, 1997., p. 325-89]
    ** Reactivity: 0. 0= This degree includes materials that are normally stable, even under fire exposure conditions, and that do not react with water. Normal fire fighting procedures may be used. [Fire Protection Guide to Hazardous Materials. 12 ed. Quincy, MA: National Fire Protection Association, 1997., p. 325-89]
FLMT FLAMMABLE LIMITS ** IN AIR 8.4-38.7% BY VOL [Hawley, G.G. The Condensed Chemical Dictionary. 9th ed. New York: Van Nostrand Reinhold Co., 1977., p. 203]
FLPT FLASH POINT ** -18 DEG F [Sax, N.I. Dangerous Properties of Industrial Materials. 6th ed. New York, NY: Van Nostrand Reinhold, 1984., p. 781]
FIRP FIRE FIGHTING PROCEDURES ** If material on fire or involved in fire: Do not extinguish fire unless flow can be stopped. Use water in flooding quantities as fog. Cool all affected containers with flooding quantities of water. Apply water from as far a distance as possible. [Association of American Railroads. Emergency Handling of Hazardous Materials in Surface Transportation. Washington, DC: Association of American Railroads, Bureau of Explosives, 1994., p. 1081]
    ** Evacuation: If fire becomes uncontrollable or container is exposed to direct flame - consider evacuation of one-half (1/2) mile radius. [Association of American Railroads. Emergency Handling of Hazardous Materials in Surface Transportation. Washington, DC: Association of American Railroads, Bureau of Explosives, 1994., p. 1081]
EXPL EXPLOSIVE LIMITS AND POTENTIAL ** LOWER, 24%; UPPER, 40.3%. [Sax, N.I. Dangerous Properties of Industrial Materials. 6th ed. New York, NY: Van Nostrand Reinhold, 1984., p. 781]
    ** EXPLOSIVE OR SIMILARLY VIGOROUS REACTIONS BETWEEN HALOGENATED HYDROCARBONS, INCLUDING CHLOROTRIFLUOROETHYLENE, AND OTHER CHEM ARE DESCRIBED AND REFERENCED. [LELEU MJ; CAH NOTES DOC 96: 451 (1979)]
REAC REACTIVITIES AND INCOMPATIBILITIES ** VIOLENT REACTION WHEN MIXED WITH (BROMINE & OXYGEN) OR (CHLORINE TRIFLUORIDE & WATER). [Sax, N.I. Dangerous Properties of Industrial Materials. 6th ed. New York, NY: Van Nostrand Reinhold, 1984., p. 781]
    ** Partial oxidation of a gasoline fraction in an autoclave under oxygen, initially at 22 bar and 100 deg C, ran wild and exploded; several smaller reactions had proceeded uneventfully. [Bretherick, L. Handbook of Reactive Chemical Hazards. 4th ed. Boston, MA: Butterworth-Heinemann Ltd., 1990, p. 1400]
    ** Interaction of the reactants (pre-mixed at -196 deg C) during warming to -78 deg C, then ambient temperature, exploded. Progressive addition of the alkene to the perchlorate at -78 was uneventful. [Bretherick, L. Handbook of Reactive Chemical Hazards. 4th ed. Boston, MA: Butterworth-Heinemann Ltd., 1990, p. 1027]
EQUP PROTECTIVE EQUIPMENT AND CLOTHING ** SELF-CONTAINED BREATHING APPARATUS; GOGGLES; RUBBER GLOVES. [U.S. Coast Guard, Department of Transportation. CHRIS - Hazardous Chemical Data. Volume II. Washington, D.C.: U.S. Government Printing Office, 1984-5., p. ]
OPRM OTHER PREVENTATIVE MEASURES ** If material not on fire and not involved in fire: Keep sparks, flames, and other sources of ignition away. Keep material out of water sources and sewers. Attempt to stop leak if without undue personnel hazard. Use water spray to knock-down vapors. [Association of American Railroads. Emergency Handling of Hazardous Materials in Surface Transportation. Washington, DC: Association of American Railroads, Bureau of Explosives, 1994., p. 1081]
    ** Personnel protection: Avoid breathing vapors. Keep upwind. ... Do not handle broken packages unless wearing appropriate personal protective equipment. Approach fire with caution. [Association of American Railroads. Emergency Handling of Hazardous Materials in Surface Transportation. Washington, DC: Association of American Railroads, Bureau of Explosives, 1994., p. 1081]
    ** Evacuation: If material leaking (not on fire) consider evacuation from downwind area based on amount of material spilled, location and weather conditions. [Association of American Railroads. Emergency Handling of Hazardous Materials in Surface Transportation. Washington, DC: Association of American Railroads, Bureau of Explosives, 1994., p. 1081]
SHIP SHIPMENT METHODS AND REGULATIONS ** No person may /transport,/ offer or accept a hazardous material for transportation in commerce unless that person is registered in conformance ... and the hazardous material is properly classed, described, packaged, marked, labeled, and in condition for shipment as required or authorized by ... /the hazardous materials regulations (49 CFR 171-177)./ [49 CFR 171.2 (7/1/96)]
    ** The International Air Transport Association (IATA) Dangerous Goods Regulations are published by the IATA Dangerous Goods Board pursuant to IATA Resolutions 618 and 619 and constitute a manual of industry carrier regulations to be followed by all IATA Member airlines when transporting hazardous materials. [IATA. Dangerous Goods Regulations. 38th ed. Montreal, Canada and Geneva, Switzerland: International Air Transport Association, Dangerous Goods Board, January, 1997., p. 225]
    ** The International Maritime Dangerous Goods Code lays down basic principles for transporting hazardous chemicals. Detailed recommendations for individual substances and a number of recommendations for good practice are included in the classes dealing with such substances. A general index of technical names has also been compiled. This index should always be consulted when attempting to locate the appropriate procedures to be used when shipping any substance or article. [IMDG; International Maritime Dangerous Goods Code; International Maritime Organization p.2118 (1988)]
DISP DISPOSAL METHODS ** SRP: At the time of review, criteria for land treatment or burial (sanitary landfill) disposal practices are subject to significant revision. Prior to implementing land disposal of waste residue (including waste sludge), consult with environmental regulatory agencies for guidance on acceptable disposal practices.
++ TOXI   Toxicity/Biomedical Effects
HTOX HUMAN TOXICITY EXCERPTS ** SUMMARY TOXICITY STATEMENT: MODERATE BY /ACUTE/ INHALATION... MODERATE: MAY CAUSE REVERSIBLE OR IRREVERSIBLE CHANGES TO EXPOSED TISSUE, NOT PERMANENT INJURY OR DEATH; CAN CAUSE CONSIDERABLE DISCOMFORT. [Sax, N.I. Dangerous Properties of Industrial Materials. 5th ed. New York: Van Nostrand Rheinhold, 1979., p. 502]
NTOX NON-HUMAN TOXICITY EXCERPTS ** HALOGEN DERIVATIVES OF ETHYLENE- DIFLUORODICHLOROETHYLENE, TRIFLUOROCHLOROETHYLENE & TETRAFLUOROETHYLENE WERE STUDIED IN ALBINO RATS, GUINEA PIGS & ALBINO MICE. TOXICITY DECR WITH INCR NUMBER OF F ATOMS IN MOLECULE [SAKHAROVA LN, TOLGSKAYA MS; GIG TR PROF ZABOL (5): 36 (1977)]
    ** MALE FISCHER-344 RATS WERE SUBJECTED TO 4.0 HR INHALATION EXPOSURE TO CHLOROTRIFLUOROETHYLENE (CTFE) CONCN, 100-540 PPM. WITHIN 2 DAYS FOLLOWING EXPOSURE, RATS EXHIBITED DOSE-RELATED PROXIMAL TUBULAR NECROSIS, DIURESIS, INCR IN URINARY FLUORIDE, URINARY LACTIC DEHYDROGENASE (LDH) ACTIVITY, SERUM CREATININE AND BUN (BLOOD UREA NITROGEN). CTFE PRODUCED NECROSIS OF THE PARS RECTA PORTION OF THE PROXIMAL TUBULE. AT LOWEST EXPOSURE CONCN, DIURESIS WAS THE MOST SENSITIVE INDEX OF TOXICITY MANIFESTING 50% INCR IN WATER INTAKE AND 25% DECR IN URINE OSMOLALITY. INCR IN URINARY LDH ACTIVITY CORRELATED WITH THE DEG OF PROXIMAL RENAL TUBULAR NECROSIS, WITH GREATER THAN 100-FOLD INCR AT THE HIGHEST CONCN OF CTFE. AT 100 PPM, CTFE INDUCED RENAL DYSFUNCTION (MILD DIURESIS) BUT NO SIGNIFICANT INCR IN URINARY LDH OR NECROSIS WERE APPARENT. [POTTER CL ET AL; TOXICOL APPL PHARMACOL 59 (3): 431 (1981)]
    ** MALE FISCHER-344 RATS INHALED A SUBLETHAL CONCN (395 PPM; 1882 MG/CU M) OF THE NEPHROTOXIN CHLOROTRIFLUOROETHYLENE (CTFE) FOR 4 HR/DAY FOR 5 CONSECUTIVE DAYS. WITHIN 1 DAY AFTER THE FIRST EXPOSURE, DIURESIS, INCR WATER INTAKE, DECR URINE OSMOLALITY, INCR URINARY LACTIC DEHYDROGENASE ACTIVITY, AND INCR PLASMA CREATININE AND UREA NITROGEN WERE FOUND. WHEN ANIMALS WERE EXPOSED REPEATEDLY, VALUES FOR THESE PARAMETERS DECLINED OR RETURNED TO CONTROL LEVELS DURING THE EXPOSURE SEQUENCE. BY THE THIRD DAY, COAGULATIVE NECROSIS OF KIDNEY INVOLVING PRIMARILY THE PARS RECTA, BUT EXTENDING TO THE PARS CONVOLUTA, OF THE PROXIMAL TUBULE WAS PRESENT. REGENERATION WAS APPARENT BY THE THIRD DAY OF EXPOSURE, AND ADDNL NECROSIS WAS MINIMAL DESPITE FURTHER EXPOSURES. [BUCKLEY LA ET AL; FUNDAM APPL TOXICOL 2 (4): 181 (1982)]
    ** RATS INHALING 1097-1240 OR 491-539 MG CHLOROTRIFLUOROETHYLENE/CU M FOR 5 HR/DAY, 5 DAYS/WK FOR 7 WK SHOWED ELEVATED URINARY LACTIC DEHYDROGENASE, AMINO ACIDS, AND FLUORIDE AND A DEPRESSED WT GAIN. NECROSIS AND DEGENERATION WERE OBSERVED IN THE KIDNEY TUBULES. [ZHOU S ET AL; PEI-CHING I HSUEH YUAN HSUEH PAO 12 (3): 149 (1980)]
    ** Suspensions of isolated rat proximal tubular cells were used to study the uptake and toxicity of the cysteine-S-conjugates and mercapturic acids of tetrafluoroethylene (TFE), chlorotrifluoroethylene (CTFE), 1,1-dichloro-2,2-difluoroethylene (DCDFE), and 1,1-dibromo-2,2-difluoroethylene (DBDFE). Toxicity of the S-conjugates was determined by their ability to inhibit alpha-methylglucose uptake by the cells. The cytotoxicity of the cysteine-S-conjugates and mercapturates of tetrafluoroethylene and chlorotrifluoroethylene was similar, the cysteine-S-conjugates of 1,1-dichloro-2,2-difluoroethylene and 1,1-dichloro-2,2-difluoroethylene were more toxic than their mercapturates. The cytotoxicity of the conjugates decreased in the following order tetrafluoroethylene and chlorotrifluoroethylene followed by 1,1-dichloro-2,2-difluoroethylene followed by 1,1-dibromo-2,2-difluoroethylene. Inhibition of renal cysteine-S-conjugate beta-lyase by aminooxyacetic-acid alleviated the cytotoxicity of both the cysteine-S-conjugates and the mercapturic acids of the four haloethylenes. The cytotoxicity of the mercapturates, but not of the cysteine-S-conjugates could be reduced by probenecid, suggesting that the cysteine-S-conjugates were transported by a different carrier system than the mercapturates. The deacetylation of the mercapturates oftetrafluoroethylene and chlorotrifluoroethylene in the cells was much higher than that of the mercapturates of 1,1-dichloro-2,2-difluoroethylene and 1,1-dibromo-2,2-difluoroethylene. The cysteine-S-conjugates of 1,1-dichloro-2,2-difluoroethylene and 1,1-dibromo-2,2-difluoroethylene were N-acetylated by the cells whereas the other cysteine-S-conjugates were not or were only marginally N-acetylated. The differences in cytotoxicity may be due to differences in the balance between acetylation/deacetylation by the cells, the conversion rate of the S-conjugates to toxic metabolites by renal beta-lyase and the transport into the proximal tubular cells. [Boogaard PJ et al; 21: 3731-41 (1989)]
    ** Short term and subchronic toxicities of inhaled chlorotrifluoroethylene (CTFE) were studied, and serum and urinary fluoride levels were measured. Male and female CD-rats were exposed to 0, 33, 61, 119, or 241 ppm mean levels of chlorotrifluoroethylene for 6 hr per day, 5 days/wk, for 2 weeks. Pregnant CD-rats were exposed in the same way from days six through 19 of gestation. For subchronic exposure, F344-rats were exposed to 0, 29, 62, or 121 ppm chlorotrifluoroethylene for 6 hr/day, 5 days per week, for 13 weeks. In short term tests, only the highest dose caused body weight reductions in male and nonmated females. Weight gain in pregnant rats was reduced at the two highest doses. No embryotoxic, teratogenic, or fetotoxic effects were observed. Microscopic signs of toxic nephrosis were seen in males and females at the highest dose, and testicular changes were noted at this dose. Subchronic exposure to 121 ppm was associated with decreased erythrocytes at the end of a 2 week recovery period in males and at 60 days in females. Dose related changes in biochemical indices, organ weights, and histology revealed kidney toxicity. The middle portion of the kidney cortex showed large, usually dilated tubules lined by enlarged epithelial cells with enlarged nuclei. Urine fluoride and fluorine levels were elevated but decreased as the study progressed. Chlorotrifluoroethylene exposure levels may be more important than total number of exposures, and an operating standard for worker exposure could start at 29 ppm as a no observable adverse effect level. [Gad SC et al; J of the American College of Toxicol 7 (5): 663-74 (1988)]
    ** The nephrotoxicity of chlorotrifluoroethylene (CTFE) was examined using isolated rabbit renal tubules suspensions. Exposure of the tubules to chlorotrifluoroethylene resulted in formation of a glutathione conjugate and inhibition of active organic acid transport. Synthetic cysteine, N-acetylcysteine or glutathione conjugates of chlorotrifluoroethylene inhibited transport indicating S-conjugation as a possible toxic pathway. 1,2-dichlorovinyl glutathione (DCVG) a model synthetic glutathione conjugate, was used to examine the degradation and toxicity of these conjugates. 1,2-dichlorovinyl glutathione inhibited rabbit renal tubule transport in vivo and in vitro. The 1,2-dichlorovinyl glutathione was found to be degraded with the evolution of glutamine and glycine to produce the ultimate nephro-toxicant, dichlorovinyl cysteine. Dichlorovinyl cysteine is then bioactivated with the release of ammonia. This sequential degradation explains the latency of 1,2-dichlorovinyl glutathione -induced renal transport inhibition relative to dichlorovinyl cysteine. ... Certain halogenated ethylenes are capable of being biotransformed to glutathione conjugates in the kidney with tneir subsequent hydrolysis to nephrotoxic cysteine conjugates. [Hassall CD et al; Chem Biol Interact 49 (3): 283-97 (1984)]
    ** Male Fischer-344 rats were exposed via inhalation to a sublethal concentration (395 ppm + or - 33 ppm; 1882 mg/cu m) of the nephrotoxin chlorotrifluoroethylene (CTFEl for 4 hr/day for 5 consecutive days. Within 1 day after the first exposure, rats exhibited diuresis, increased water intake, decreased urine osmolality, increased urinary lactic dehydrogenase activity and increased plasma creatinine and urea nitrogen. When animals were exposed repeatedly, values for these parameters declined or returned to control levels during the exposure sequence in a manner comparable to rats receiving the single exposure. By the third day post exposure, coagulative necrosis involving primarily the pars recta, but extending to the pars convoluta, of the proximal tubule was present. Regeneration was apparent by the third day of exposure, and additional necrosis was minimal despite further exposures. Daily levels of urinary inorganic fluoride, an index of chlorotrifluoroethylene metabolism, were increased to 3-6 mu moles/24 hr/rat during the exposure sequence which coincided with a brief elevation in serum fluoride at the end of each exposure. Adaptation to chlorotrifluoroethylene is evident either through changes in the metabolism or disposition of chlorotrifluoroethylene or from a refractive property of the regenerating tissue to chlorotrifluoroethylene. [Buckley LA et al; Fundam Appl Toxicol 2 (4): 181-6 (1982)]
    ** Male Fischer-344 rats were subjected to 4 hr inhalation exposure to chlorotrifluoroethylene (CTFE) concentrations, 100-540 ppm, or hexafluoropropene (HFP) concentratlons, 380-1200 ppm. Within 2 days following exposure, rats exhibited dose-related proximal tubular necrosis, diuresis, increases in urinary fluoride, urinary lactic dehydrogenase (LDH) activity, serum creatinine and BUN (blood urea N). Toxicities of chlorotrifluoroethylene and hexafluoropropene were similar except that chlorotrifluoroethylene as the more potent renal toxin and hexafluoropropene produced necrosis of the pars recta and pars convoluta portions of the proximal tubule, while chlorotrifluoroethylene produced necrosis of only pars recta. At lowest exposure concentrations, diuresis was the most sensitive index of toxicity manifesting 50% increases in water intake and 25% decreases in urine osmolality. Increases in urinary lactic dehydrogenase activity correlated with the degree of proximal renal tubular necrosis, with > 100-fold increases at the highest concentrations of chlorotrifluoroethylene and hexafluoropropene. At 100 ppm, chlorotrifluoroethylene induced renal dysfunction (mild diuresis) but no significant increase in urinary lactic dehydrogenase or necrosis were apparent. All concentrations of hexafluoropropene produced necrosis within 24 hr postexposure, with tubular cell regeneration apparent within 4 days. [Potter CL et al; Toxicol Appl Pharmacol 59 (3): 431-40 (1981)]
ADE ABSORPTION, DISTRIBUTION AND EXCRETION ** AFTER EXPOSURE OF RABBITS TO TRIFLUOROCHLOROETHYLENE AT 0.1%, THE ALVEOLAR ABSORPTION RATE WAS 5.80%. TRIFLUOROCHLOROETHYLENE WAS DETECTED IN BLOOD AND URINE. THE KIDNEY, BONE, AND LUNG HAD THE HIGHEST DISTRIBUTION AMONG VARIOUS ORGANS EXAMINED. [DING X ET AL; CHUNG-HUA YU FANG I HSUEH TSA CHIH 14 (1): 39 (1980)]
METB METABOLISM/METABOLITES ** Since halogenated vinyl cysteine conjugates are known to be potent nephrotoxicants, chlorotrifluoroethylene was studied for its ability to be metabolically activated to the cysteine conjugate. This was shown not to occur in a biological system. However, if a glutathione adduct of chlorotrifluoroethylene is synthesized, this adduct was shown to degrade non-enzymatically to form the cysteine conjugate. Thus, incubation of chlorotrifluoroethylene with a renal cortex brush border preparation high in C-S lyase did not result in the formation of pyruvate, indicating the lack of ability of a renal preparation to directly activate chlorotrifluoroethylene presumably because of the inability to form the glutathione adduct. [Bonhaus DW, Gandolfi AJ; Life Sci 29 (23): 2399 (1981)]
    ** CHLOROTRIFLUOROETHYLENE, A SUBSTRATE FOR GLUTATHIONE S-TRANSFERASE ACTIVITY IN RAT HEPATIC CYTOSOLIC AND MICROSOMAL FRACTIONS, WAS INVESTIGATED, WHEREIN THE RATES OF REACTION WERE DETERMINED BY MEASURING GLUTATHIONE DISAPPEARANCE, AT 5-15 OR 35-70 NMOL/MIN/MG OF CYTOSOLIC OR MICROSOMAL PROTEIN, RESPECTIVELY. A PRODUCT OF THE CYTOSOL-CATALYZED REACTION BETWEEN CHLOROTRIFLUOROETHYLENE AND GLUTATHIONE WAS S-(2-CHLORO-1,1,2-TRIFLUOROETHYL)GLUTATHIONE. THE GLUTATHIONE S-TRANSFERASE-CATALYZED ADDN REACTION WITH A HALOGENATED OLEFIN MAY BE OF TOXICOLOGICAL SIGNIFICANCE. [DOHN DR, ANDERS MW; BIOCHEM BIOPHYS RES COMMUN 109 (4): 1339 (1982)]
    ** Chlorotrifluoroethene is nephrotoxic in rats, and glutathione S-transferase-catalyzed S-(2-chloro-1,1,2-trifluorethyl)glutathione (CTFG) formation is the initial step in its bioactivation. S-(2-chloro-1,1,2-trifluorethyl)glutathione biosynthesis and the activities of cytosolic and microsomal glutathione S-transferases were measured in rat and human hepatocytes and in human hepatoma-derived Hep G2 cells. Both human liver and Hep G2 cell subcellular fractions catalyzed S-(2-chloro-1,1,2-trifluorethyl)glutathione formation, and human and rat microsomal fractions exhibited higher specific activities than cytosolic fractions with chlorotri{luoroethene as the substrate. The presence of microsomal glutathione S-transferase was demonstrated by Western blotting with antimicrosomal glutathione S-transferase antibodies in rat and human liver tissue and in Hep G2 cells. Cytosolic and microsomal glutathione S-transferase activities were lower in Hep G2 cells than in rat and human liver tissues. ... Human hepatocytes and Hep G2 cells are competent to synthesize S-(2-chloro-1,1,2-trifluorethyl)glutathione. [Tanaka E, Anders MW; Drug Metabolism and Disposition 23 (1): 48-54 (1995)]
    ** The effect of isoflurane on the anaerobic metabolism of halothane to chlorodifluoroethene (CDE) and chlorotrifluoroethane (CTE) was studied with microsomes of guinea pig liver. The Km values for chlorotrifluoroethane formation were 1204.74, 553.75, 521.14, 560.67, and 711.05 uM at 0 mM, 0.12 mM, 0.29 mM, 0.58 mM and 1.16 mM isoflurane, respectively. In contrast, the Vmax values for chlorodifluoroethene and chlorotrifluoethane formation at these isoflurane concentrations were not significantly different than in the control groups. The production of chlorodifluoroethene and chlorotrifluoroethane was significantly increased by isoflurane, at concentrations up to 0.58 mM. [Rahman M et al; J Appl Toxicol 14 (1): 43-6 (1994)]
    ** The fate of reactive intermediates resulting from in vivo metabolism of haloethene cysteine S-conjugates was studied by characterizing the adducts formed with rat renal proteins. Tetrafluoroethene and chlorotrifluoroethene were reacted with cysteine to form S-(1,1,2,2-tetrafluoroethyl)-L-cysteine, and S-(2-chloro-1,1,2-trifluoroethyl)-L-cysteine (CTFC), respectively. Male Fischer-344-rats were administered S-(1,1,2,2-tetrafluoroethyl)-L-cysteine or S-(2-chloro-1,1,2-trifluoroethyl)-L-cysteine by intraperitoneal injection, and their kidneys and urine were examined. A single amino acid, lysine, was stably adducted as a result of S-(2-chloro-1,1,2-trifluoroethyl)-L-cysteine and TFEC metabolism in-vivo, forming N-epsilon-(chlorofluorothioacethyl)lysine and N-episilon-(difluorothioacetyl)lysine, respectively. [Harris JW et al; Chemical Research in Toxicology 5 (1): 34-41 (1992)]
    ** Defluorination and cytochrome p450 loss induced by fluoroethenes and fluorochloroethenes were studied in-vitro. Hepatic microsomes were isolated from male Sprague-Dawley-rats, some of which had been pretreated with sodium-phenobarbital (phenobarialtal) or beta-naphthoflavone (BNFl. These were incubated with 1,1-difluoroethene (DFE), 2-chloro-1.1-difluoroethene (CUE), trifluoroethene (TFE), or trifluorochloroethene (TFCE). The effects of structure on fluoride release and cytochrome p450 and heme loss were investigated. Near maximal release of fluoride occurred in microsomes from phenobarbital treated rats. The greatest release occurred with 2-chloro-1,1-difluoroethene followed by trifluorochloroethene, trifluoroethene, and 1,1-difluoroethene in that order. The amounts of fluoride released were 2.4 to four times that released from untreated microsomes. BNF caused a slight inhibition of fluoride release from all compounds, relative to microsomes from untreated rats. Trifluoroethene caused the greatest loss of cytochrome and heme from microsomes, followed by 2-chloro-1,1-difluoroethene, trifluoroethene, and 1,1-difluoroethene in that order. The pattern was the same for untreated and phenobarbital and beta-naphthoflavone treated microsomes; however, the greatest losses occurred in microsomes from phenobarbital pretreated rats. Fluoroethenes and chloroethenes are cytochrome p450 substrates that effectively inactivate cytochrome p450 isozymes. Their ability to undergo these reactions, however, depends on the degree and nature of their halogen substituents. [Baker MT et al; Drug Metabolism and Disposition 15 (4): 499-503 (1987)]
++ ENVI   Environm. Fate/Exposure Potent.
ENVS ENVIRONMENT FATE/EXPOSURE SUMMARY ** Chlorotrifluoroethylene's production and subsequent use as a plastic film for food packaging, as a chemical intermediate during the synthesis of high performance lubricants, plastics, and elastomers may result in the release of chlorotrifluoroethylene through various waste streams. The biotransformation of CFC-113 under aerobic conditions in the environment also forms chlorotrifluoroethylene. If released to the atmosphere, chlorotrifluoroethylene is expected to exist solely in the vapor phase based on an experimentally derived vapor pressure of 4600 mm Hg at 25 deg C. In the vapor phase, chlorotrifluoroethylene will degrade via reaction with hydroxyl radicals with experimentally derived half-lives of about 2 days. Chlorotrifluoroethylene is also expected to react with both atomic oxygen and ozone with rate constants of 2.7X10-11 and 1.6X10-20 cu cm/mol sec, respectively. An estimated half-life of 715 years is calculated for the reaction of chlorotrifluoroethylene with ozone. If released to soil, chlorotrifluoroethylene is expected to have moderate mobility based on an estimated Koc of 190. In moist soils, chlorotrifluoroethylene may decompose. Chlorotrifluoroethylene may volatilize from moist soil surfaces with an estimated Henry's Law constant of 0.31 atm-cu m/mol; it is expected to volatilize rapidly from dry soils due to its high vapor pressure. In water, chlorotrifluoroethylene is expected to decompose. In a landfill leachate, this compound had a half-life transformation rate of 42 days; in a sulfide-containing buffer, degradation was complete in less than one day. Volatilization from water surfaces may also be a major fate process for this chemical based on its Henry's Law constant. Bioconcentration of chlorotrifluoroethylene in aquatic organisms is not an important fate process based on an estimated BCF of 11. (SRC)
ARTS ARTIFICIAL SOURCES ** Chlorotrifluoroethylene's production and subsequent use as a plastic film for food packaging(1), as a chemical intermediate during the synthesis of high performance lubricants, plastics, and elastomers(2) may result in the release of chlorotrifluoroethylene through various waste streams(SRC). The biotransformation of CFC-113 in the environment is believed to occur via reductive dechlorination to form 1,2-dichloro-1,2,2-trifluoroethane and then, through elimination, chlorotrifluoroethylene(3). [(1) Oswin CR; Food Chem 8: 121 (1982) (2) Considine DM; Chemical and Process Technol Encyc. NY,NY: McGraw-Hill p. 280 (1974) (3) Jackson RE et al; pp. 511-26 in Groundwater Contamination and Analysis at Hazardous Waste Sites, Lesage, S & Jackson, RE (eds), Marcel Dekker, Inc: NY,NY (1994)]
FATE ENVIRONMENT FATE ** TERRESTRIAL FATE: An estimated Koc of 190(1,SRC), from an estimated Kow(2,SRC), indicates that chlorotrifluoroethylene will have moderate mobility in soil(SRC) according to a suggested classification scheme(3). Leaching may be possible, however, chlorotrifluoroethylene is expected to decompose in water(4). It degrades in less than a day in sulfide-containing buffer(5). Volatilization of chlorotrifluoroethylene may be a major fate process for chlorotrifluoroethylene released directly to soil. With an estimated Henry's Law constant of 0.31 atm-cu m/mol(6) volatilization from moist soils may be possible although decomposition may preclude volatilization under these conditions; a vapor pressure of 4600 mm Hg indicates that chlorotrifluoroethylene will volatilize quickly from dry soil surfaces(7,SRC). [(1) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington DC: Amer Chem Soc pp. 4-9 (1990) (2) Meylan WM, Howard PH; J Pharm Sci 84: 83-92 (1995) (3) Swann RL et al; Res Rev 85: 23 (1983) (4) Lewis RJ; Hawley's Condensed Chemical Dictionary. 12th ed. NY,NY: Van Nostrand Reinhold Co p. 274 (1991) (5) Jackson RE et al; p 511-25 in Groundwater Contamination and Analysis at Hazardous Waste Sites, Lesage, S & Jackson, RE (eds), NY,NY: Marcel Dekker, Inc (1994) (6) Meylan W, Howard PH; Environ Toxicol Chem 10: 1283-93 (1991) (7) Daubert TE, Danner RP; Physical and Thermodynamic Properties of Pure Chemicals: Data Compilation, NY: Hemisphere Pub Corp (1989)]
    ** AQUATIC FATE: Volatilization of chlorotrifluoroethylene from water surfaces may be a major fate process for this chemical in aquatic systems; however, decomposition of chlorotrifluoroethylene in water may preclude volatilization(1). Chlorotrifluoroethylene has a measured half-life of approximately 42 days in landfill leachate(2). It degrades in less than a day in sulfide-containing buffer(2). An estimated Henry's Law constant of 0.31 atm-cu m/mol(3) indicates that chlorotrifluoroethylene will volatilize quickly from water surfaces(4); a volatilization half-life was calculated for a model river (3 hours) and for a model lake (4 days)(4). Bioconcentration of chlorotrifluoroethylene in aquatic organisms is not expected to be a major fate process based on an estimated BCF of 11(4,SRC), from an estimated log Kow(5,SRC). Chlorotrifluoroethylene is not expected to adsorb to sediments and particulate matter in the water column as it has an estimated Koc of 188(4,SRC), calculated from an estiamted log Kow(5,SRC). [(1) Lewis RJ; Hawley's Condensed Chemical Dictionary. 12th ed. NY,NY: Van Nostrand Reinhold Co p 274 (1991) (2) Jackson RE et al; p 511-26 in Groundwater Contamination and Analysis at Hazardous Waste Sites, Lesage, S & Jackson, RE (eds), NY,NY: Marcel Dekker, Inc (1994) (3) Meylan W, Howard PH; Environ Toxicol Chem 10: 1283-93 (1991) (4) Lyman WJ et al; Handbook of Chemical Property Estimation Methods Washington, DC: Amer Chem Soc p. 15-1 to 15-29, 5-4, 5-10, 4-9 (1990) (5) Meylan WM, Howard PH; J Pharm Sci 84: 83-92 (1995)]
    ** ATMOSPHERIC FATE: Based on a vapor pressure of 4600 mm Hg at 25 deg C as determined from experimentally derived coefficients(1,SRC), chlorotrifluoroethylene will exist solely in the vapor phase(2,SRC). In the atmosphere, it will degrade by reaction with photochemically produced hydroxyl radicals with half-lives, determined from experimentally derived rate constants, of 2.2(3,SRC) to 2.3(4,SRC) days. A rate constant for the chlorine-atom initiated oxidation of chlorotrifluoroethylene in the atmosphere gives CClF2CF(O) as the major product; the quantum yield of oxidation for this reaction is >1000 relative to the quantum yield for olefin(5). Reaction with ozone gives an estimated half-life of 715 days(6). The primary product of this reaction is the corresponding carbonyl product(7). A rate constant of 2.7X10-11 cm cu/mol sec is reported for the reaction of chlorotrifluoroethylene with atomic oxygen(7). [(1) Lyman WJ; p 31 in Environmental Exposure From Chemicals Vol I, Neely WB, Blau GE (eds), Boca Raton, FL: CRC Press (1985) (2) Bidleman TF; Environ Sci Technol 22: 361-7 (1988) (3) Abbatt JPD, Anderson JG; J Phys Chem 95: 2382-90 (1991) (4) Howard CJ; J Chem Phys 65: 4771-7 (1976) (5) Sanhueza E et al; J Chem Rev 76: 801-26 (1976) (6) Meylan WM, Howard PH; Chemosphere 26: 2293-9 (1993) (7) Heicklen JP et al; Oxidation of Halocarbons Washington DC: USEPA-650/3-75-008 pp.152 (1975)]
ABIO ABIOTIC DEGREDATION ** A rate constant for the reaction of chlorotrifluoroethylene with hydroxyl radicals was measured as 7X10-12 cm cu/mol sec(1) using low-pressure discharge flow up to 7 Torr of He. This corresponds to an atmospheric half-life for chlorotrifluoroethylene of about 2.3 days at an atmospheric concentration of 5X10+5 hydroxyl radicals/cu cm(1,SRC). Using high-pressure discharge flow, a rate constant of 7.27X10-12 cm cu/mol sec(2) was measured for the same reaction. This corresponds to an atmospheric half-life for chlorotrifluoroethylene of about 2.2 days at an atmospheric concentration of 5X10+5 hydroxyl radicals/cu cm(2,SRC). The chlorine-atom initiated gas phase, room temperature oxidation of chlorotrifluoroethylene proceeds by a long chain free radical process(3) with the major product (95%) being CClF2CF(O)(4). The quantum yield of oxidation for this reaction is >1000 relative to the quantum yield for olefin(4). The ozonolysis of chlorotrifluoroethylene proceeds through chain oxidation, carried by a diradical mechanism which is inhibited in the presence of O2. The major product of the reaction is the corresponding carbonyl product(3). An estimated rate constant of 1.6X10-20 cm cu/mol sec for the reaction of chlorotrifluoroethylene with ozone gives a half-life for this compound of 715 days at an ozone concentration of 7X10+11 mol/cm cu(5). In the reaction of atomic oxygen with chlorotrifluoroethylene, CF2O and CFClO were reported as products with CF2O the more important; CFClO may have been a contaminant(3). A rate constant of 2.7X10-11 cm cu/mol sec is reported for the reaction of chlorotrifluoroethylene with atomic oxygen using flash photolysis and kinetic spectroscopy(6). Chlorotrifluoroethylene has a measured half-life of approximately 42 days in landfill leachate. It degrades in less than a day in sulfide-containing buffer(7). [(1) Howard CJ; J Chem Phys 65: 4771-7 (1976) (2) Abbatt JPD, Anderson JG; J Phys Chem 95: 2382-90 (1991) (3) Heicklen JP, et al; Oxidation of Halocarbons USEPA-650/3-75-008 Washington DC: USEPA pp.152 (1975) (4) Sanhueza E et al; J Chem Rev 76: 801-26 (1976) (5) Meylan WM, Howard PH; Chemosphere 26: 2293-9 (1993) (6) Herron JT, Huie RE; J Phys Chem Ref Data 2: 467-518 (1973) (7) Jackson RE et al; p 511-26 in Groundwater Contamination and Analysis at Hazardous Waste Sites, Lesage S & Jackson RE (eds), NY,NY: Marcel Dekker, Inc (1994)]
BIOC BIOCONCENTRATION ** A BCF of 11 was calculated for chlorotrifluoroethylene, using an estimated log Kow of 1.65(1,SRC) and a recommended regression-derived equation(2,SRC). This BCF value suggests that chlorotrifluoroethylene will not bioconcentrate in aquatic organisms(2,SRC). [(1) Meylan WM, Howard PH; J Pharm Sci 84: 83-92 (1995) (2) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington DC: Amer Chem Soc pp. 5-4, 5-10 (1990)]
KOC SOIL ADSORPTION/MOBILITY ** Based on an estimated log Kow of 1.65(1,SRC), the Koc of chlorotrifluoroethylene is estimated as approximately 190 using a regression-derived equation(2,SRC). According to a suggested classification scheme(3), this estimated Koc value suggests that chlorotrifluoroethylene has moderate mobility in soil(SRC). Chlorotrifluoroethylene is believed to be more mobile than 1,1,2-trichloro-1,2,2-trifluoroethane (CFC-113) as it is less halogenated; CFC-113 has a retardation factor of approximately 10 in a sand and gravel aquifer with an organic carbon content of 0.06%(4). [(1) Meylan WM, Howard PH; J Pharm Sci 84: 83-92 (1995) (2) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington DC: Amer Chem Soc pp. 4-9 (1990) (3) Swann RL et al; Res Rev 85: 23 (1983) (4) Jackson RE et al; pp 511-26 in Groundwater Contamination and Analysis at Hazardous Waste Sites, Lesage S & Jackson RE (eds), NY,NY: Marcel Dekker, Inc (1994)]
VWS VOLATILIZATION FROM WATER/SOIL ** The Henry's Law constant for chlorotrifluoroethylene is estimated as 0.31 atm-cu/mole(1,SRC). This value indicates that volatilization of chlorotrifluoroethylene from water surfaces proceeds quickly(2). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep flowing 1 m/sec with a wind velocity of 3 m/sec) is 3 hours(2,SRC). The volatilization half-life from a model environmental lake (1 m deep) can be estimated to be about 4 days(2,SRC). [(1) Meylan W, Howard PH; Environ Toxicol Chem 10:1283-93 (1991) (2) Lyman WJ et al; Handbook of Chemical Property Estimation Methods Washington, DC: Amer Chem Soc p. 15-15 to 15-29 (1990)]
EFFL EFFLUENTS CONCENTRATIONS ** Chlorotrifluoroethylene was detected at unknown concentrations in a groundwater sample near the Gloucester landfill, used for disposal of organic chemicals from the Government's laboratories in Ottawa, in Ontario Canada(1). [(1) Jackson RE et al; pp 511-26 in Groundwater Contamination and Analysis at Hazardous Waste Sites, Lesage, S & Jackson, RE (eds), NY,NY: Marcel Dekker, Inc (1994)]
++ STAN   Standards/Regul. for Exposure
SDWG STATE DRINKING WATER GUIDELINES ** (NH) NEW HAMPSHIRE 5.0 ug/l[USEPA/Office of Water; Federal-State Toxicology and Risk Analysis Committee (FSTRAC). Summary of State and Federal Drinking Water Standards and Guidelines (11/93), p. ]
++ MONI   Monitoring Analysis Methods
ALAB ANALYTIC LABORATORY METHODS ** Chlorotrifluoroethylene was detected in groundwater using a GC/MS with a 30-m DB-624 analytical column. The GC was cooled to -5 deg C with liquid CO2 for analysis. [Jackson RE et al; pp 511-26 in Groundwater Contamination and Analysis at Hazardous Waste Sites, Lesage, S & Jackson, RE (eds), NY,NY: Marcel Dekker, Inc. (1994)]
++ REFE   References, Additional
RPTS SPECIAL REPORTS ** CLAYTON JW; TOXICOLOGY OF THE FLUORO ALKENES REVIEW AND RESEARCH NEEDS; ENVIRON HEALTH PERSPECT (21): 255 (1977). REVIEW OF THE TOXICOLOGY OF FLUOROALKENES.
*** End of SHOW ***

Ausgabe-Format: SHOW F=ALL

Kontakt

Hersteller
Ansprechpartner

Anhang

Anhang

- Copyright: DIMDI -

Alle Rechte an diesen Informationen, auch zur Vervielfältigung und Verbreitung, sind dem DIMDI vorbehalten.